THE JOURNAL OF ANTIBIOTICS

NEW ANTIBIOTICS, CARBAZOMYCINS A AND B

II. STRUCTURAL ELUCIDATION

KATSU-ICHI SAKANO and SHOSHIRO NAKAMURA

Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine, Kasumi, Minami-ku, Hiroshima 734, Japan

(Received for publication July 4, 1980)

The structures of carbazomycins A and B are elucidated to be 3,4-dimethoxy-1,2-dimethylcarbazole and 4-hydroxy-3-methoxy-1,2-dimethylcarbazole, respectively. Further, ¹³C-chemical shifts of carbazomycins and their derivatives are assigned simultaneously.

Carbazomycins were isolated from the cultured mycelia of an unidentified *Streptomyces*, tentatively designated as strain H 1051-MY 10. Carbazomycins inhibited the growth of phytophathogenic fungi and further showed weak antibacterial and antiyeast activities¹⁾. Carbazomycin B (I), $C_{15}H_{15}NO_2$, was suggested to have one phenolic hydroxyl, one methoxyl and two methyl groups on a carbazole nucleus. While, carbazomycin A (II), $C_{16}H_{17}NO_2$, was proved to be O-methylcarbazomycin B¹⁾. The structures of carbazomycins A and B are elucidated by studying the ¹H- and ¹⁸C-NMR spectra of both antibiotics and their derivatives and described in this paper.

Structures

¹H- and ¹³C-chemical shifts of carbazomycins and their derivatives are shown in Tables 1 and 2, respectively. Signals for H-4 and H-5 in the ¹H-NMR spectra of carbazole derivatives are reported to be observed usually at lower field than the other aromatic protons of a carbazole nucleus because those two protons are mutually deshielded²⁻⁵⁾. Thus, one double doublet (1H, J=7.0, 2.0 Hz) at δ 8.31 in the ¹H-NMR spectrum of carbazomycin B (I) can be assigned for H-5 of a carbazole nucleus as shown in Fig. 1 and Table 1. The double doublet at δ 8.31 suggests the existence of three or four adjacent aromatic protons and the absence of H-4 in I. Further, chemical shifts due to four aromatic tertiary carbons in the ¹³C-NMR spectrum of I are strikingly related to those of carbazole as seen

in Table 2. Thus, the four aromatic protons of **I** are presumed to be located adjacently on the same ring of a carbazole nucleus.

The appropriate strong band due to four adjacent aromatic protons is also observed near 750 cm^{-1} in the infrared absorption spectra of I and carbazomycin A (II).

The four substituents of II are considered to be in a sterically congested environment, because the signals of two methyl carbons are observed at higher field (δ 12.6 and 13.6) than usual values (δ 15~25) and two methoxyl carbons at lower

Fig. 1. Structures of o	carbazomycins	and their
Carbazomycin B (I)	$R_1 = OH$	$R_2 = H$
Carbazomycin A (II)	$R_1 = OCH$	$H_3 R_2 = H$
Deoxycarbazomycin B ($\mathbf{H} = \mathbf{R}_1 = \mathbf{H}$	$R_2 = H$
O-Acetylcarbazomycin I	B (IV)	
	$R_1 = OCOCH$	$\mathbf{H}_3 \mathbf{R}_2 = \mathbf{H}$
O,6-Diacetylcarbazomyc	cin B (V)	
R1	=OCOCH ₃ R	$_2 = COCH_3$

	H–5	H-6	H–7	H-8	1-CH ₈ -	2-CH ₃ -	3-CH ₃ O-	R ₁ -	-NH-	6–CH ₃ CO–
Carbazomycin B (I) $R_1=OH, R_2=H$	8.31 (dd, <i>J</i> =7.0, 2.0)		7.14~7.38 (m)		2.36 (s)	2.28 (s)	3.80 (s)	6.21 (s)	7.71 (brs)	
Carbazomycin A (II) $R_1=OCH_3, R_2=H$	8.25 (dd, <i>J</i> =7.0, 2.0)		7.13~7.42 (m)		2.40 (s)	2.40 (s)	3.92 (s)	4.13 (s)	7.89 (brs)	_
Deoxycarbazomycin B (III) $R_1=H, R_2=H$	8.08 (dd, <i>J</i> =7.0, 1.5)		7.16~7.52 (m)		2.47 (s)	2.36 (s)	3.98 (s)	7.45 (s)	8.00 (brs)	_
O-Acetylcarbazomycin B (IV) $R_1=OCOCH_3, R_2=H$	7.83 (dd, <i>J</i> =7.0, 2.0)		7.04~7.37 (m)		2.27 (s)	2.15 (s)	3.80 (s)	2.55 (s)	7.84 (brs)	_
O,6-Diacetylcarbazomycin B (V) R ₁ =OCOCH ₃ , R ₂ =COCH ₃	8.47 (d, <i>J</i> =1.8)	_	7.88 (dd, $J = (d, 5, 1.8)$	7.06 d, <i>J</i> = 8.5)	2.25 (s)	2.07 (s)	3.83 (s)	2.64 (s)	8.32 (brs)	2.68 (s)

Table 1. ¹H-Chemical shifts of carbazomycins and their derivatives.

All spectra were run on a JEOL PS-100 spectrometer (100 MHz) using TMS as an internal standard and $CDCl_3$ as a solvent. Chemical shifts were expressed as δ in ppm.

s: singlet, d: doublet, dd: doublet of doublet, m: multiplet, brs: broad singlet.

Carbon No.	Multiplicity	Ι	п	III	IV	V	Carbazole
C-1	S	110.0°)	114.4 ^{d)}	119.5 ^f)	116.6 ^{g)}	117.2 ⁱ)	110.5
C-2	S	127.0	128.7	124.2 ^f)	128.3	129.1	125.8
C-3	S	142.0	144.4°)	152.6	143.4	144.0	119.4
C-4	s (d) ^{a)}	138.5	145.9°)	99.0	135.8 ^h)	135.93)	120.3
C–4a	S	109.3°)	113.5 ^d)	118.5 ^f)	110.3 ^{g)}	110.31)	119.2
C-4b	S	123.3	122.8	120.1 ^f)	121.8	121.4	119.2
C-5	d	122.7	122.5	119.8	121.3	122.6	120.3
C-6	d (s) ^{b)}	119.5	119.4	118.9	119.3	129.4	119.4
C-7	d	124.7	125.0	124.9	125.4	126.1	125.8
C-8	d	110.0	110.3	110.7	110.7	110.7	110.5
C-8a	S	139.3	139.4	139.6	139.8 ^h)	142.6	140.5
C–9a	S	136.8	136.4	134.2	136.4	136.6 ^j)	140.5
C-10	q	12.7	12.6	12.3	12.7	12.7	
C-11	q	13.1	13.6	13.8	13.5	13.5	
C-12	q	61.4	61.1	56.2	61.3	61.3	
C-13	q		60.5				

Table 2. ¹³C-Chemical shifts of carbazomycins and their derivatives.

All spectra were run on a JEOL PFT-100 spectrometer (25.15 MHz) using TMS as an internal standard and CDCl₈ as a solvent. Chemical shifts were expressed as δ in ppm. Experimental conditions were as follows: spectral width 5 KHz, pulse width 16 μ sec, repetition time 2.0 sec. ^a): multiplicity of III, ^b): multiplicity of V. ^{c)~J)}: tentatively assigned. s: singlet, d: doublet, q: quartet.

field (δ 60.5 and 61.1) than usual values (δ 53~57) in the ¹³C-NMR spectrum of II. Consequently, four substituents in I and II should be located on the same ring of a carbazole nucleus^{6,7)}.

Deoxycarbazomycin B (III) was prepared by the reduction of O-tosylcarbazomycin B over RANEY nickel to locate the hydroxyl group of I on a carbazole nucleus as shown in Fig. $2^{3,43}$. A new doublet due to the deoxylated carbon is appeared at δ 99.0 in the ¹³C-NMR spectrum of III. Further, the chemical shift of the carbon substituted with a methoxyl group of III is shifted downfield to δ 152.6 from δ 142.0 of I and a methoxyl carbon of III shifted to δ 56.2 from δ 61.4 of I, while no significant shift due to two methyl carbons is observed in I and III. A new singlet for one aromatic proton is also observed at δ 7.45 in the ¹H-NMR spectrum of III. The chemical shift of an aromatic proton adjacent to a methoxyl group is reported to shift upfield by *ca*. 0.5 ppm^{3,4,8,9)}. Therefore, the new singlet at δ 7.45 can be assigned to H-4 in III as seen in Fig. 1. In the selective proton decoupling spectrum of III (100 MHz, in CCl₄, not degassed) irradiating at a methoxyl group (δ 3.98) and two methyl groups (δ 2.47 and 2.36), NOE of H-4 is observed by *ca*. 20% when irradiated at the methoxyl group, but not observed when irradiated at the two methyl groups.

Carbazomycin B (I) was acetylated with pyridine and acetic anhydride to give O-acetylcarbazomycin B (IV), while O,6-diacetylcarbazomycin B (V) was prepared by the acetylation of I on heating with acetic anhydride in the presence of zinc chloride as seen in Fig 2¹⁰. The selective proton decouping spectrum of V (100 MHz, in CDCl₃, not degassed) irradiating at the two methyl groups (δ 2.07 and 2.25) showed NOE of -NH- proton by *ca*. 15% when irradiated at one methyl group (δ 2.25).

The ultraviolet absorption spectrum of III; λ_{\max}^{EtOH} , nm (ε); 219 (29,300), 236 (29,900), 253 (17,600), 264 (13,200), 303 (16,700), 336 (3,700) and 352 (3,500); is closely related to that of 3-methoxycar-bazole¹¹ and 3-methoxy-2-methylcarbazole¹².

THE JOURNAL OF ANTIBIOTICS

Fig. 3. GC-Mass spectra of carbazomycins. Carbazomycin B (I)

Column: glass column, 2 m, SE-30 (1 w/w%). Column temp. 220°C, Detector temp. 300°C. Carrier gas: He 28 ml/min, 1.8 kg/cm². Retention time: 4.5 min. Ion source: EI. Ionization energy: 20 eV.

Carbazomycin A (II)

Column: glass column, 2 m, SE-30 (1 w/w%). Column temp. 200°C, Detector temp. 300°C. Carrier gas: He 28 ml/min, 1.5 kg/cm². Retention time: 7.4 min. Ion source: EI. Ionization energy: 20 eV.

Fig. 4. Fragmentation of carbazomycins.

The GC-mass spectra of I and II are shown in Fig. 3 and the location of the methoxyl group is also suggested to be on C-3 of a carbazole nucleus by the fragment ion peak⁴⁾ at m/e [M-CH₈-CO]⁺ as illustrated in Fig. 4.

Thus, none of results above obtained conflicts with the structures for I and II, 4-hydroxy-3methoxy-1,2-dimethylcarbazole (I) and 3,4-dimethoxy-1,2-dimethylcarbazole (II), respectively.

Assignments of ¹³C-Chemical Shifts

Aromatic methyl carbons: Chemical shifts of aromatic methyl carbons of carbazomycins and their derivatives are assigned by the selective proton decoupling technique. The signals at δ 12.7 and 13.5 can be assigned to 1-CH₃ carbon (C-10) and 2-CH₃ carbon (C-11) respectively by the selective proton decoupling spectrum of O-acetylcarbazomycin B (IV) irradiating at 1-CH₃ protons (δ 2.27) and 2-CH₃ protons (δ 2.15). The signal which appeared in higher field in the region of δ 12~14 can be attributed to C-10 and the other to C-11 in the ¹³C-NMR spectra of I~V.

Aromatic methoxyl carbons: The signal at δ 61.1 ~ 61.4 due to 3-CH₃O carbon (C-12) is observed in the ¹³C-NMR spectra of I, II, IV and V and the signals at δ 61.1 and 60.5 in the ¹³C-NMR spectrum of II are considered to relate to C-12 and 4-CH₃O carbon (C-13), respectively.

Aromatic tertiary carbons: The signals for C-1 and C-8 appear at higher field and that for C-2 and C-7 appear at lower field in the ¹³C-NMR spectra of carbazole derivatives¹³⁾. Therefore, two

doublets centered at *ca*. δ 110 and 125 can be assigned to C-8 and C-7 of $\mathbf{I} \sim \mathbf{V}$, respectively. Selective proton decoupling by irradiating at H-5 (δ 8.31) of I causes the doublet centered at δ 122.7 to become a sharp singlet. Thus, the doublet centered at *ca*. δ 120~123 can be assigned to C-5 of $\mathbf{I} \sim \mathbf{V}$. Consequently, the other doublet centered at *ca*. δ 119 is postulated to relate to C-6 of $\mathbf{I} \sim \mathbf{IV}$, while the singlet due to C-6 is shifted to δ 129.4 in V.

Aromatic quaternary carbons: Two singlets at δ 120~123 and δ 139~143 in the ¹⁸C-NMR spectra of I~V can be assigned to C-4b and C-8a respectively by the comparison of chemical shifts of I~V with that of carbazole and its derivatives¹³⁾. The signal for an aromatic quaternary carbon substituted with a methoxyl, hydroxyl or acetoxyl group appears at lower field. Particularly, a carbon substituted with a methoxyl group shifts more downfield than a carbon substituted with a hydroxyl or acetoxyl group^{14~16)}. Therefore, the singlet more downfield than δ 140 should be attributed to C-3 of I~V. Further, the singlet at δ 138.5 of I can be assigned to C-4 substituted with a hydroxyl group and the singlet at *ca*. δ 136 of IV and V is explained by C-4 substituted with an acetoxyl group. The signal for C-9a is considered to appear at slightly higher field than that for C-8a through the influences of *ortho*methyl and *para*-methoxyl groups. Thus, the singlet in the region δ 134~137 is attributable to C-9a of I~V. Similarly, two signals C-4a and C-1 are expected to appear at higher field than that for C-4b and C-8 through the influences of substituents at the *ortho*- and *para*-positions. Therefore, two singlets in the region δ 109~119 are assigned to C-4a and C-1 of I, II, IV and V. Finally, the residual singlet at *ca*. δ 127~129 is presumed to relate to C-2 of I, II, IV and V.

Experimental

Deoxycarbazomycin B (III)

Carbazomycin B (77 mg) was refluxed with dry pyridine (5 ml) and *p*-toluenesulfonyl chloride (500 mg) for 2 hours. The reaction mixture was purified on a slica gel column (41 × 2.2 cm, diam.), eluted first with 100 ml of *n*-hexane - AcOEt (9: 1) followed by *n*-hexane - AcOEt (4: 1) and the eluate was collected in 19-ml fractions each. Fractions No. 9~21 were combined, concentrated *in vacuo* and recrystallized from *n*-hexane and AcOEt to afford O-tosylcarbazomycin B (70 mg), colorless needles, m.p. 232.0~235.5°C. Mass; m/e 395 (M⁺). IR in KBr; 3380 cm⁻¹ (-NH–), 1370 cm⁻¹ (-SO₈–) and 1185 cm⁻¹ (-SO₈–). ¹H-NMR in CDCl₃ (100 MHz); a broad singlet for –NH– proton (1H, δ 7.94), multiplets for eight aromatic protons (3H, δ 7.97~8.14: 5H, δ 7.04~7.44), a singlet for a methoxyl group (3H, δ 3.43) and three singlets for three methyl groups (3H×3, δ 2.46, 2.30 and 2.26).

O-Tosylcarbazomycin B (66 mg) dissolved in dry EtOH was refluxed for 10 hours with RANEY nickel (400 mg). The resulting product was chromatographed on a sillica gel column (41×2.2 cm, diam.), eluted with *n*-hexane - AcOEt (19: 1) and the eluate was collected in 17-ml fractions. Fractions No. $5 \sim 11$ were combined, concentrated *in vacuo* and recrystallized from *n*-hexane and AcOEt to afford deoxycarbazomycin B (8 mg), colorless needles, m.p. $129.0 \sim 130.0^{\circ}$ C. Mass; *m/e* 225 (M⁺). IR in KBr; 3340 cm⁻¹ (–NH–).

O-Acetylcarbazomycin B (IV)

Carbazomycin B (72 mg) dissolved in a mixture of pyridine (1 ml) and Ac₂O (2 ml) was kept at room temperature for 24 hours. The resulting product was suspended in H₂O and extracted with AcOEt. The extract was concentrated, applied to a silica gel column (54×2.2 cm, diam.), eluted with benzene - AcOEt (9:1) and the eluate was collected in 10-ml fractions. Fractions No. 16~21 were combined, concentrated *in vacuo* and finally recrystallized from *n*-hexane and AcOEt to afford O-acetylcarbazomycin B (46 mg), colorless needles, m.p. 192.0~195.0°C. Mass; *m/e* 283 (M⁺). IR in KBr; 3340 cm⁻¹ (-NH–) and 1745 cm⁻¹ (CH₃COO–). UV; λ_{max}^{EtOH} , nm (ε); 240 (52,600), 261 (22,600),

966

294 (22,200), 328 (4,500) and 342 (4,500).

O,6-Diacetylcarbazomycin B (V)

Carbazomycin B (72 mg) was heated with Ac₂O (2 ml) and ZnCl₂ (100 mg) at 70°C for 30 hours. The reaction mixture was suspended in H₂O and extracted with AcOEt. The extract was concentrated, applied to a silica gel column (53×2.2 cm, diam.), eluted with *n*-hexane - AcOEt (7:3) and the eluate was collected in 15-ml fractions. Fractions No. 19~23 were combined, concentrated *in vacuo* and recrystallized from *n*-hexane and AcOEt to afford O,6-diacetylcarbazomycin B (57 mg), colorless crystalline powder, m.p. 242.0~242.5°C. Mass; *m/e* 325 (M⁺). IR in KBr; 3300 cm⁻¹ (-NH-), 1735 cm⁻¹ (CH₃COO-) and 1655 cm⁻¹ (Ar-COCH₃).

Acknowledgement

This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan, to which we are deeply indebted.

References

- SAKANO, K.; K. ISHIMARU & S. NAKAMURA: New antibiotics, carbazomycins A and B. I. Fermentation extraction, purification and physico-chemical and biological properties. J. Antibiotics 33: 683~689, 1980
- BURNELL, R. H. & D. D. CASA: Alkaloids of Aspidosperma vargasii A. DC. Canad. J. Chem. 45: 89~ 92, 1967
- CHAKRABORTY, D. P.: Glycozoline, a carbazole derivative, from *Glycosmis pentaphylla*. Phytochem. 8: 769~772, 1969
- CHAKRABORTY, D. P.; B. P. DAS & S. P. BASAK: Structure of glycozolidine. Plant Biochem. J. 1 (2): 73 ~ 77, 1974
- 5) ZECHMEISTER, L.; W. HERZ, H. GRISEBACH & G. W. KIRBY: Progress in the Chemistry of Organic Natural Products. Vol. 34, Carbazole alkaloids. 1977
- HUGHES, D. W.; H. L. HOLLAND & D. B. MACLEAN: ¹³C Magnetic resonance spectra of some isoquinoline alkaloids and related model compounds. Canad. J. Chem. 54: 2252~2260, 1976
- 7) WOOLFENDEN, W. R. & D. M. GRANT: Carbon-13 magnetic resonance. V. Conformational dependence of the chemical shifts in the methybenzenes. J. Am. Chem. Soc. 88: 1496~1502, 1966
- CHAKRABORTY, D. P.: Glycozoline, a carbazole derivative from *Glycosmis pentaphylla*. Tetrahed. Lett. 1966: 661~664, 1966
- SMITH, G. W.: High resolution proton magnetic resonance studies of *para*-disubstituted benzenes. J. Mol. Spectr. 12: 146~170, 1964
- LOPATINSKII, V. P.; E. E. SIROTKINA & M. M. ANOSOVA: Studies on chemistry of carbazole derivatives. I. Acetylation of carbazole with acetic anhydride in the presence of ZnCl₂ and other catalysts. Izv. Tomskogo Politekhn. Inst. III: 36~39, 1961
- CHAKRABORTY, D. P.; J. DUTTA & A. GHOSH: The ultrviolet absorption spectra of some simple carbazole derivatives. Sci. Cult. 31: 529~530, 1965
- CUMMINS, J. A.; B. F. KAYE & M. L. TOMLINSON: 1,2,3,4-Tetrahydro-6-hydroxy-7-methylcarbazole and 3-hydroxy-2-methylcarbazole. J. Chem. Soc. 1954: 1414~1415, 1954
- 13) JOHNSON, L. F. & W. C. JANOWSKI: Carbon-13 NMR spectra: A collection of assigned, coded and indexed spectra. A Wiley-Interscience Publication
- 14) SPIESECKE, H. & W. G. SCHNEIDER: Substituent effects on the C¹³ and H¹ chemical shifts in monosubstituted benzenes. J. Chem. Phys. 35: 731~738, 1961
- LAUTERBUR, P. C.: C¹³ Nuclear magnetic resonance spectroscopy. II. Phenols, anisole and dimethoxybenzenes. J. Am. Chem. Soc. 83: 1846~1852, 1961
- 16) LAUTERBUR, P. C.: Magnetic shieldings and the electronic structures of aromatic molecules. Tetrahed. Lett. 1961: 274~279, 1961